Abstract
Most models of sensory processing in the brain have a feedforward architecture in which each stage comprises simple linear filtering operations and nonlinearities. Models of this form have been used to explain a wide range of neurophysiological and psychophysical data, and many recent successes in artificial intelligence (with deep convolutional neural nets) are based on this architecture. However, neocortex is not a feedforward architecture. This paper proposes a first step toward an alternative computational framework in which neural activity in each brain area depends on a combination of feedforward drive (bottom-up from the previous processing stage), feedback drive (top-down context from the next stage), and prior drive (expectation). The relative contributions of feedforward drive, feedback drive, and prior drive are controlled by a handful of state parameters, which I hypothesize correspond to neuromodulators and oscillatory activity. In some states, neural responses are dominated by the feedforward drive and the theory is identical to a conventional feedforward model, thereby preserving all of the desirable features of those models. In other states, the theory is a generative model that constructs a sensory representation from an abstract representation, like memory recall. In still other states, the theory combines prior expectation with sensory input, explores different possible perceptual interpretations of ambiguous sensory inputs, and predicts forward in time. The theory, therefore, offers an empirically testable framework for understanding how the cortex accomplishes inference, exploration, and prediction.
Publisher
Proceedings of the National Academy of Sciences
Reference86 articles.
1. von Helmholtz H (1925) Treatise on Physiological Optics
2. translated from the 3rd German Edition (1910) (Optical Society of America, Washington, DC).
3. Optical flow using spatiotemporal filters;Heeger;Int J Comput Vis,1988
4. Heeger DJ Simoncelli EP (1993) Model of visual motion sensing. Spatial Vision in Humans and Robots, eds Harris L Jenkin M (Cambridge Univ Press, New York), pp 367–392.
5. Bayesian inference with probabilistic population codes
Cited by
165 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献