Spatial patterns of tree yield explained by endogenous forces through a correspondence between the Ising model and ecology

Author:

Noble Andrew E.,Rosenstock Todd S.ORCID,Brown Patrick H.,Machta Jonathan,Hastings Alan

Abstract

Spatial patterning of periodic dynamics is a dramatic and ubiquitous ecological phenomenon arising in systems ranging from diseases to plants to mammals. The degree to which spatial correlations in cyclic dynamics are the result of endogenous factors related to local dynamics vs. exogenous forcing has been one of the central questions in ecology for nearly a century. With the goal of obtaining a robust explanation for correlations over space and time in dynamics that would apply to many systems, we base our analysis on the Ising model of statistical physics, which provides a fundamental mechanism of spatial patterning. We show, using 5 y of data on over 6,500 trees in a pistachio orchard, that annual nut production, in different years, exhibits both large-scale synchrony and self-similar, power-law decaying correlations consistent with the Ising model near criticality. Our approach demonstrates the possibility that short-range interactions can lead to long-range correlations over space and time of cyclic dynamics even in the presence of large environmental variability. We propose that root grafting could be the common mechanism leading to positive short-range interactions that explains the ubiquity of masting, correlated seed production over space through time, by trees.

Funder

NSF | MPS | Office of Multidisciplinary Activities

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference47 articles.

1. Strogatz SH (2003) Sync: The Emerging Science of Spontaneous Order (Hyperion, New York).

2. The Kuramoto model: A simple paradigm for synchronization phenomena

3. Goldenfeld N (1992) Lectures on Phase Transitions and the Renormalization Group (Westview Press, New York).

4. Sethna JP (2006) Statistical Mechanics: Entropy, Order Parameters and Complexity (Oxford Univ Press, Oxford).

5. Solé RV (2011) Phase Transitions (Princeton Univ Press, Princeton).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3