Partner abundance controls mutualism stability and the pace of morphological change over geologic time

Author:

Chomicki Guillaume,Renner Susanne S.

Abstract

Mutualisms that involve symbioses among specialized partners may be more stable than mutualisms among generalists, and theoretical models predict that in many mutualisms, partners exert reciprocal stabilizing selection on traits directly involved in the interaction. A corollary is that mutualism breakdown should increase morphological rates of evolution. We here use the largest ant-plant clade (Hydnophytinae), with different levels of specialization for mutualistic ant symbionts, to study the ecological context of mutualism breakdown and the response of a key symbiosis-related trait, domatium entrance hole size, which filters symbionts by size. Our analyses support three predictions from mutualism theory. First, all 12 losses apparently only occur from a generalist symbiotic state. Second, mutualism losses occurred where symbionts are scarce, in our system at high altitudes. Third, domatium entrance hole size barely changes in specialized symbiotic species, but evolves rapidly once symbiosis with ants has broken down, with a “morphorate map” revealing that hotspots of entrance hole evolution are clustered in high-altitude areas. Our study reveals that mutualistic strategy profoundly affects the pace of morphological change in traits involved in the interaction and suggests that shifts in partners’ relative abundances may frequently drive reversions of generalist mutualisms to autonomy.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference71 articles.

1. The Evolution of Cooperation

2. Pathways to mutualism breakdown

3. Rethinking Mutualism Stability: Cheaters and the Evolution of Sanctions

4. Varieties of mutualistic interaction in population models

5. Keeler KH (1985) Cost:benefit models of mutualism. The Biology of Mutualism, Ecology and Evolution, ed Boucher DH (Oxford Univ Press, Oxford, UK), pp 100–127.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3