Author:
Yu Fan,Hirschberger Max,Loew Toshinao,Li Gang,Lawson Benjamin J.,Asaba Tomoya,Kemper J. B.,Liang Tian,Porras Juan,Boebinger Gregory S.,Singleton John,Keimer Bernhard,Li Lu,Ong N. Phuan
Abstract
Strong evidence for charge-density correlation in the underdoped phase of the cuprate YBa2Cu3Oy was obtained by NMR and resonant X-ray scattering. The fluctuations were found to be enhanced in strong magnetic fields. Recently, 3D charge-density–wave (CDW) formation with long-range order (LRO) was observed by X-ray diffraction in H> 15 T. To elucidate how the CDW transition impacts the pair condensate, we have used torque magnetization to 45 T and thermal conductivity κxx to construct the magnetic phase diagram in untwinned crystals with hole density p = 0.11. We show that the 3D CDW transitions appear as sharp features in the susceptibility and κxx at the fields HK and Hp, which define phase boundaries in agreement with spectroscopic techniques. From measurements of the melting field Hm(T) of the vortex solid, we obtain evidence for two vortex solid states below 8 K. At 0.5 K, the pair condensate appears to adjust to the 3D CDW by a sharp transition at 24 T between two vortex solids with very different shear moduli. At even higher H (41 T), the second vortex solid melts to a vortex liquid which survives to fields well above 41 T. de Haas–van Alphen oscillations appear at fields 24–28 T, below the lower bound for the upper critical field Hc2.
Funder
U.S. Department of Energy
National Science Foundation
Gordon and Betty Moore Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献