Notch1 controls development of the extravillous trophoblast lineage in the human placenta

Author:

Haider Sandra,Meinhardt Gudrun,Saleh Leila,Fiala Christian,Pollheimer Jürgen,Knöfler Martin

Abstract

Development of the human placenta and its different epithelial trophoblasts is crucial for a successful pregnancy. Besides fusing into a multinuclear syncytium, the exchange surface between mother and fetus, progenitors develop into extravillous trophoblasts invading the maternal uterus and its spiral arteries. Migration into these vessels promotes remodelling and, as a consequence, adaption of blood flow to the fetal–placental unit. Defects in remodelling and trophoblast differentiation are associated with severe gestational diseases, such as preeclampsia. However, mechanisms controlling human trophoblast development are largely unknown. Herein, we show that Notch1 is one such critical regulator, programming primary trophoblasts into progenitors of the invasive differentiation pathway. At the 12th wk of gestation, Notch1 is exclusively detected in precursors of the extravillous trophoblast lineage, forming cell columns anchored to the uterine stroma. At the 6th wk, Notch1 is additionally expressed in clusters of villous trophoblasts underlying the syncytium, suggesting that the receptor initiates the invasive differentiation program in distal regions of the developing placental epithelium. Manipulation of Notch1 in primary trophoblast models demonstrated that the receptor promotes proliferation and survival of extravillous trophoblast progenitors. Notch1 intracellular domain induced genes associated with stemness of cell columns, myc and VE-cadherin, in Notch1fusogenic precursors, and bound to themycpromoter and enhancer region at RBPJκ cognate sequences. In contrast, Notch1 repressed syncytialization and expression of TEAD4 and p63, two regulators controlling self-renewal of villous cytotrophoblasts. Our results revealed Notch1 as a key factor promoting development of progenitors of the extravillous trophoblast lineage in the human placenta.

Funder

Austrian Science Fund

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 121 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3