Extensive sequence divergence between the reference genomes of two elite indica rice varieties Zhenshan 97 and Minghui 63

Author:

Zhang Jianwei,Chen Ling-Ling,Xing Feng,Kudrna David A.,Yao Wen,Copetti Dario,Mu Ting,Li Weiming,Song Jia-Ming,Xie WeiboORCID,Lee Seunghee,Talag Jayson,Shao Lin,An Yue,Zhang Chun-Liu,Ouyang Yidan,Sun Shuai,Jiao Wen-Biao,Lv Fang,Du Bogu,Luo Meizhong,Maldonado Carlos Ernesto,Goicoechea Jose Luis,Xiong Lizhong,Wu Changyin,Xing Yongzhong,Zhou Dao-Xiu,Yu Sibin,Zhao Yu,Wang Gongwei,Yu Yeisoo,Luo Yijie,Zhou Zhi-Wei,Hurtado Beatriz Elena Padilla,Danowitz Ann,Wing Rod A.,Zhang Qifa

Abstract

Asian cultivated rice consists of two subspecies: Oryza sativa subsp. indica and O. sativa subsp. japonica. Despite the fact that indica rice accounts for over 70% of total rice production worldwide and is genetically much more diverse, a high-quality reference genome for indica rice has yet to be published. We conducted map-based sequencing of two indica rice lines, Zhenshan 97 (ZS97) and Minghui 63 (MH63), which represent the two major varietal groups of the indica subspecies and are the parents of an elite Chinese hybrid. The genome sequences were assembled into 237 (ZS97) and 181 (MH63) contigs, with an accuracy >99.99%, and covered 90.6% and 93.2% of their estimated genome sizes. Comparative analyses of these two indica genomes uncovered surprising structural differences, especially with respect to inversions, translocations, presence/absence variations, and segmental duplications. Approximately 42% of nontransposable element related genes were identical between the two genomes. Transcriptome analysis of three tissues showed that 1,059–2,217 more genes were expressed in the hybrid than in the parents and that the expressed genes in the hybrid were much more diverse due to their divergence between the parental genomes. The public availability of two high-quality reference genomes for the indica subspecies of rice will have large-ranging implications for plant biology and crop genetic improvement.

Funder

National Natural Science Foundation of China

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3