Author:
Liu Yuchen,Vinyard David J.,Reesbeck Megan E.,Suzuki Tateki,Manakongtreecheep Kasidet,Holland Patrick L.,Brudvig Gary W.,Söll Dieter
Abstract
The sulfur-containing nucleosides in transfer RNA (tRNAs) are present in all three domains of life; they have critical functions for accurate and efficient translation, such as tRNA structure stabilization and proper codon recognition. The tRNA modification enzymes ThiI (in bacteria and archaea) and Ncs6 (in archaea and eukaryotic cytosols) catalyze the formation of 4-thiouridine (s4U) and 2-thiouridine (s2U), respectively. The ThiI homologs were proposed to transfer sulfur via cysteine persulfide enzyme adducts, whereas the reaction mechanism of Ncs6 remains unknown. Here we show that ThiI from the archaeon Methanococcus maripaludis contains a [3Fe-4S] cluster that is essential for its tRNA thiolation activity. Furthermore, the archaeal and eukaryotic Ncs6 homologs as well as phosphoseryl-tRNA (Sep-tRNA):Cys-tRNA synthase (SepCysS), which catalyzes the Sep-tRNA to Cys-tRNA conversion in methanogens, also possess a [3Fe-4S] cluster similar to the methanogenic archaeal ThiI. These results suggest that the diverse tRNA thiolation processes in archaea and eukaryotic cytosols share a common mechanism dependent on a [3Fe-4S] cluster for sulfur transfer.
Funder
HHS | NIH | National Institute of General Medical Sciences
National Science Foundation
DOE Office of Science Office of Basic Energy Sciences
Publisher
Proceedings of the National Academy of Sciences
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献