The structure of the catechin-binding site of human sulfotransferase 1A1

Author:

Cook Ian,Wang Ting,Girvin Mark,Leyh Thomas S.

Abstract

We are just beginning to understand the allosteric regulation of the human cytosolic sulfotransferase (SULTs) family—13 disease-relevant enzymes that regulate the activities of hundreds, if not thousands, of signaling small molecules. SULT1A1, the predominant isoform in adult liver, harbors two noninteracting allosteric sites, each of which binds a different molecular family: the catechins (naturally occurring flavonols) and nonsteroidal antiinflammatory drugs (NSAIDs). Here, we present the structure of an SULT allosteric binding site—the catechin-binding site of SULT1A1 bound to epigallocatechin gallate (EGCG). The allosteric pocket resides in a dynamic region of the protein that enables EGCG to control opening and closure of the enzyme’s active-site cap. Furthermore, the structure offers a molecular explanation for the isozyme specificity of EGCG, which is corroborated experimentally. The binding-site structure was obtained without X-ray crystallography or multidimensional NMR. Instead, a SULT1A1 apoprotein structure was used to guide positioning of a small number of spin-labeled single-Cys mutants that coat the entire enzyme surface with a paramagnetic field of sufficient strength to determine its contribution to the bound ligand’s transverse (T2) relaxation from its 1D solution spectrum. EGCG protons were mapped to the protein surface by triangulation using the T2 values to calculate their distances to a trio of spin-labeled Cys mutants. The final structure was obtained using distance-constrained molecular dynamics docking. This approach, which is readily extensible to other systems, is applicable over a wide range of ligand affinities, requires little protein, avoids the need for isotopically labeled protein, and has no protein molecular weight limitations.

Funder

HHS | NIH | National Institute of General Medical Sciences

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3