Author:
Kloumann Isabel M.,Ugander Johan,Kleinberg Jon
Abstract
Methods for ranking the importance of nodes in a network have a rich history in machine learning and across domains that analyze structured data. Recent work has evaluated these methods through the “seed set expansion problem”: given a subsetSof nodes from a community of interest in an underlying graph, can we reliably identify the rest of the community? We start from the observation that the most widely used techniques for this problem, personalized PageRank and heat kernel methods, operate in the space of “landing probabilities” of a random walk rooted at the seed set, ranking nodes according to weighted sums of landing probabilities of different length walks. Both schemes, however, lack an a priori relationship to the seed set objective. In this work, we develop a principled framework for evaluating ranking methods by studying seed set expansion applied to the stochastic block model. We derive the optimal gradient for separating the landing probabilities of two classes in a stochastic block model and find, surprisingly, that under reasonable assumptions the gradient is asymptotically equivalent to personalized PageRank for a specific choice of the PageRank parameterαthat depends on the block model parameters. This connection provides a formal motivation for the success of personalized PageRank in seed set expansion and node ranking generally. We use this connection to propose more advanced techniques incorporating higher moments of landing probabilities; our advanced methods exhibit greatly improved performance, despite being simple linear classification rules, and are even competitive with belief propagation.
Funder
Simons Foundation
DOD | Army Research Office
Facebook
Google
David Morgenthaler
Publisher
Proceedings of the National Academy of Sciences
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献