Dynamic translation regulation inCaulobactercell cycle control

Author:

Schrader Jared M.ORCID,Li Gene-Wei,Childers W. Seth,Perez Adam M.,Weissman Jonathan S.,Shapiro Lucy,McAdams Harley H.

Abstract

Progression of theCaulobactercell cycle requires temporal and spatial control of gene expression, culminating in an asymmetric cell division yielding distinct daughter cells. To explore the contribution of translational control, RNA-seq and ribosome profiling were used to assay global transcription and translation levels of individual genes at six times over the cell cycle. Translational efficiency (TE) was used as a metric for the relative rate of protein production from each mRNA. TE profiles with similar cell cycle patterns were found across multiple clusters of genes, including those in operons or in subsets of operons. Collections of genes associated with central cell cycle functional modules (e.g., biosynthesis of stalk, flagellum, or chemotaxis machinery) have consistent but different TE temporal patterns, independent of their operon organization. Differential translation of operon-encoded genes facilitates precise cell cycle-timing for the dynamic assembly of multiprotein complexes, such as the flagellum and the stalk and the correct positioning of regulatory proteins to specific cell poles. The cell cycle-regulatory pathways that produce specific temporal TE patterns are separate from—but highly coordinated with—the transcriptional cell cycle circuitry, suggesting that the scheduling of translational regulation is organized by the same cyclical regulatory circuit that directs the transcriptional control of theCaulobactercell cycle.

Funder

NIH

Jane Coffin Childs Memorial Fund for Medical Research

Helen Hay Whitney Foundation

Howard Hughes Medical Institute

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3