Mammalian glycophosphatidylinositol anchor transfer to proteins and posttransfer deacylation

Author:

Chen Rui,Walter Elizabeth I.,Parker Gregory,Lapurga John P.,Millan Jose L.,Ikehara Yukio,Udenfriend Sidney,Medof M. Edward

Abstract

The glycophosphatidylinositol (GPI) anchors of proteins expressed on human erythrocytes and nucleated cells differ with respect to acylation of an inositol hydroxyl group, a structural feature that modulates their cleavability by PI-specific phospholipase C (PI-PLC). To determine how this GPI anchor modification is regulated, the precursor and protein-associated GPIs in two K562 cell transfectants (ATCC and .48) exhibiting alternatively PI-PLC-sensitive and resistant surface proteins were analyzed and the temporal relationship between GPI protein transfer and acquisition of PI-PLC sensitivity was determined. Nondenaturing PAGE analyses demonstrated that, whereas in .48 transfectants the GPI anchors in decay accelerating factor (DAF) and placental alkaline phosphatase (PLAP) were >95% acylated, in ATCC transfectants, they were 60 and 33% unsubstituted, respectively. In contrast, TLC analyses revealed that putative GPI donors in the two lines were identical and were ≥95% acylated. Studies ofde novoDAF biosynthesis in HeLa cells bearing proteins with >90% unacylated anchors showed that within 5 min at 37°C (or at 18°C, which does not permit endoplasmic reticilum exit), >50% of the anchor in nascent 44-kDa proDAF protein exhibited PI-PLC sensitivity.In vitroanalyses of the microsomal processing of miniPLAP, a truncated PLAP reporter protein, demonstrated that the anchor donor initially transferred to prominiPLAP was acylated and then progressively was deacylated. These findings indicate that (i) the anchor moiety that initially transfers to nascent proteins is acylated, (ii) inositol acylation in mature surface proteins is regulated via posttransfer deacylation, which in general is cell-specific but also can be protein-dependent, and (iii) deacylation occurs in the endoplasmic reticulum immediately after GPI transfer.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3