Oxygen and evolutionary patterns in the sea: Onshore/offshore trends and recent recruitment of deep-sea faunas

Author:

Jacobs David K.,Lindberg David R.

Abstract

Over the last 15 years a striking pattern of diversification has been documented in the fossil record of benthic marine invertebrates. Higher taxa (orders) tend to originate onshore, diversify offshore, and retreat into deep-water environments. Previous studies attribute this macroevolutionary pattern to a variety of causes, foremost among them the role of nearshore disturbance in providing opportunities for the evolution of novel forms accorded ordinal rank. Our analysis of the post-Paleozoic record of ordinal first appearances indicates that the onshore preference of ordinal origination occurred only in the Mesozoic prior to the Turonian stage of the Cretaceous, a period characterized by relatively frequent anoxic/dysoxic bottom conditions in deeper marine environments. Later, in the Cretaceous and Cenozoic, ordinal origination of benthic organisms did not occur exclusively, or even preferentially, in onshore environments. This change in environmental pattern of ordinal origination roughly correlates with Late Cretaceous: (i) decline in anoxia/dysoxia in offshore benthic environments; (ii) extinction of faunas associated with dysoxic conditions; (iii) increase in bioturbation with the expansion of deep burrowing forms into offshore environments; and (iv) offshore expansion of bryozoan diversity. We also advance a separate argument that the Cenomanian/Turonian and latest Paleocene global events eliminated much of the deep-water benthos. This requires a more recent origin of modern vent and deep-sea faunas, from shallower water refugia, than the Paleozoic or early Mesozoic origin of these faunas suggested by other workers.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Reference61 articles.

1. Onshore-Offshore Patterns in the Evolution of Phanerozoic Shelf Communities

2. Sepkoski J J Miller A I (1985) in Phanerozoic Diversity Patterns, ed Valentine J W (Princeton Univ. Press, Princeton), pp 153–190.

3. Paleoenvironmental Patterns in the Evolution of Post-Paleozoic Benthic Marine Invertebrates

4. Jablonski D Bottjer D J (1990) in Evolutionary Innovations, ed Nitecki M H (Univ. of Chicago Press, Chicago), pp 253–288.

5. Jablonski D Bottjer D J (1990) in Causes of Evolution: A Paleontological Perspective, eds Ross R M Allmon W D (Univ. of Chicago Press, Chicago), pp 21–75.

Cited by 133 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3