Expression profiles of multiple genes in single neurons of Alzheimer’s disease

Author:

Chow Nienwen,Cox Chris,Callahan Linda M.,Weimer Jill M.,Guo LiRong,Coleman Paul D.

Abstract

Many changes have been described in the brains of Alzheimer’s disease (AD) patients, including loss of neurons and formation of senile plaques and neurofibrillary tangles. The molecular mechanisms underlying these pathologies are unclear. Northern blot, dot-blot, and reverse transcription-coupled PCR analyses have demonstrated altered expression levels of multiple messages in AD brain. Because not all cells are equally affected by the disease, these methods obviously cannot study the changes in relation to disease states of individual cells. We address this problem by using antisense RNA profiling of single cells. We present expression profiles of single neurons at early and late stages of AD and describe statistical tools for data analysis. With multivariate canonical analysis, we were able to distinguish the disease state on the basis of altered expression of multiple messages. To validate this approach, we compared results obtained by this approach with results obtained by in situ hybridization analysis. When the neurofilament medium subunit was used as a marker, our results from an antisense RNA profiling revealed no change in neurofilament medium subunit expression between early- and late-stage AD, consistent with findings obtained with in situ hybridization. However, our results obtained by either analysis at the single-cell level differed from the reported decrease in AD neocortex obtained by Northern blot analysis [Kittur, S., Hoh, J., Endo, H., Tourtellotte, W., Weeks, B. S., Markesbery, W. & Adler, W. (1994) J. Geriatr. Psychiatry Neurol. 7, 153–158]. Thus, the strategy of using the single-cell antisense RNA approach to identify altered gene expression in postmortem AD brain, followed by detailed in situ hybridization studies for genes of interest, is valuable in the study of the molecular mechanisms underlying AD neuropathology.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3