Abstract
In 1990, the Seidmans showed that a single point mutation, R403Q, in the human β-myosin heavy chain (MHC) of heart muscle caused a particularly malignant form of familial hypertrophic cardiomyopathy (HCM) [Geisterfer-Lowrance AA, et al. (1990) Cell 62:999–1006.]. Since then, more than 300 mutations in the β-MHC have been reported, and yet there remains a poor understanding of how a single missense mutation in the MYH7 gene can lead to heart disease. Previous studies with a transgenic mouse model showed that the myosin phenotype depended on whether the mutation was in an α- or β-MHC backbone. This led to the generation of a transgenic rabbit model with the R403Q mutation in a β-MHC backbone. We find that the in vitro motility of heterodimeric R403Q myosin is markedly reduced, whereas the actin-activated ATPase activity of R403Q subfragment-1 is about the same as myosin from a nontransgenic littermate. Single myofibrils isolated from the ventricles of R403Q transgenic rabbits and analyzed by atomic force microscopy showed reduced rates of force development and relaxation, and achieved a significantly lower steady-state level of isometric force compared with nontransgenic myofibrils. Myofibrils isolated from the soleus gave similar results. The force–velocity relationship determined for R403Q ventricular myofibrils showed a decrease in the velocity of shortening under load, resulting in a diminished power output. We conclude that independent of whether experiments are performed with isolated molecules or with ordered molecules in the native thick filament of a myofibril, there is a loss-of-function induced by the R403Q mutation in β-cardiac myosin.
Funder
HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases
HHS | NIH | National Heart, Lung, and Blood Institute
Canadian Institutes for Health Research and the Natural Science and Engineering Research Council of Canada
Publisher
Proceedings of the National Academy of Sciences
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献