Author:
Panduro Marisella,Benoist Christophe,Mathis Diane
Abstract
Skeletal muscle regeneration is a highly orchestrated process that depends on multiple immune-system cell types, notably macrophages (MFs) and Foxp3+CD4+ regulatory T (Treg) cells. This study addressed how Treg cells rein in MFs during regeneration of murine muscle after acute injury with cardiotoxin. We first delineated and characterized two subsets of MFs according to their expression of major histocompatibility complex class II (MHCII) molecules, i.e., their ability to present antigens. Then, we assessed the impact of Treg cells on these MF subsets by punctually depleting Foxp3+ cells during the regenerative process. Treg cells controlled both the accumulation and phenotype of the two types of MFs. Their absence after injury promoted IFN-γ production, primarily by NK and effector T cells, which ultimately resulted in MF dysregulation and increased inflammation and fibrosis, pointing to compromised muscle repair. Thus, we uncovered an IFN-γ–centered regulatory layer by which Treg cells keep MFs in check and dampen inflammation during regeneration of skeletal muscle.
Funder
HHS | NIH | National Institute of Arthritis and Musculoskeletal and Skin Diseases
JPB Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
118 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献