Thioredoxin-like2/2-Cys peroxiredoxin redox cascade supports oxidative thiol modulation in chloroplasts

Author:

Yoshida Keisuke,Hara Ayaka,Sugiura Kazunori,Fukaya Yuki,Hisabori Toru

Abstract

Thiol-based redox regulation is central to adjusting chloroplast functions under varying light conditions. A redox cascade via the ferredoxin-thioredoxin reductase (FTR)/thioredoxin (Trx) pathway has been well recognized to mediate the light-responsive reductive control of target proteins; however, the molecular basis for reoxidizing its targets in the dark remains unidentified. Here, we report a mechanism of oxidative thiol modulation in chloroplasts. We biochemically characterized a chloroplast stroma-localized atypical Trx from Arabidopsis, designated as Trx-like2 (TrxL2). TrxL2 had redox-active properties with an unusually less negative redox potential. By an affinity chromatography-based method, TrxL2 was shown to interact with a range of chloroplast redox-regulated proteins. The direct discrimination of thiol status indicated that TrxL2 can efficiently oxidize, but not reduce, these proteins. A notable exception was found in 2-Cys peroxiredoxin (2CP); TrxL2 was able to reduce 2CP with high efficiency. We achieved a complete in vitro reconstitution of the TrxL2/2CP redox cascade for oxidizing redox-regulated proteins and draining reducing power to hydrogen peroxide (H2O2). We further addressed the physiological relevance of this system by analyzing protein-oxidation dynamics. In Arabidopsis plants, a decreased level of 2CP led to the impairment of the reoxidation of redox-regulated proteins during light–dark transitions. A delayed response of protein reoxidation was concomitant with the prolonged accumulation of reducing power in TrxL2. These results suggest an in vivo function of the TrxL2/2CP redox cascade for driving oxidative thiol modulation in chloroplasts.

Funder

MEXT | Japan Society for the Promotion of Science

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3