Encephalitis is mediated by ROP18 of Toxoplasma gondii, a severe pathogen in AIDS patients

Author:

An Ran,Tang Yuewen,Chen Lijian,Cai Haijian,Lai De-HuaORCID,Liu Kang,Wan Lijuan,Gong Linli,Yu Li,Luo Qingli,Shen JilongORCID,Lun Zhao-Rong,Ayala Francisco J.,Du Jian

Abstract

The neurotropic parasite Toxoplasma gondii is a globally distributed parasitic protozoan among mammalian hosts, including humans. During the course of infection, the CNS is the most commonly damaged organ among invaded tissues. The polymorphic rhoptry protein 18 (ROP18) is a key serine (Ser)/threonine (Thr) kinase that phosphorylates host proteins to modulate acute virulence. However, the basis of neurotropism and the specific substrates through which ROP18 exerts neuropathogenesis remain unknown. Using mass spectrometry, we performed proteomic analysis of proteins that selectively bind to active ROP18 and identified RTN1-C, an endoplasmic reticulum (ER) protein that is preferentially expressed in the CNS. We demonstrated that ROP18 is associated with the N-terminal portion of RTN1-C and specifically phosphorylates RTN1-C at Ser7/134 and Thr4/8/118. ROP18 phosphorylation of RTN1-C triggers ER stress-mediated apoptosis in neural cells. Remarkably, ROP18 phosphorylation of RTN1-C enhances glucose-regulated protein 78 (GRP78) acetylation by attenuating the activity of histone deacetylase (HDAC), and this event is associated with an increase of neural apoptosis. These results clearly demonstrate that both RTN1-C and HDACs are involved in T. gondii ROP18-mediated pathogenesis of encephalitis during Toxoplasma infection.

Funder

National Key R&D Program, China

National Science Foundation of China

Academic and Technology Leaders Reserve Candidate Fund of Anhui Provence

Key Project of Outstanding Young Talent Support Program of Anhui Province University

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3