Evolution of drug resistance in an antifungal-naive chronicCandida lusitaniaeinfection

Author:

Demers Elora G.,Biermann Amy R.,Masonjones Sawyer,Crocker Alex W.,Ashare Alix,Stajich Jason E.ORCID,Hogan Deborah A.

Abstract

Management of the limited number of antimicrobials currently available requires the identification of infections that contain drug-resistant isolates and the discovery of factors that promote the evolution of drug resistance. Here, we report a single fungal infection in which we have identified numerous subpopulations that differ in their alleles of a single gene that impacts drug resistance. The diversity at this locus was markedly greater than the reported heterogeneity of alleles conferring antibiotic resistance in bacterial infections. Analysis of genomes from hundreds ofClavispora(Candida)lusitaniaeisolates, through individual and pooled isolate sequencing, from a single individual with cystic fibrosis revealed at least 25 nonsynonymous mutations inMRR1, which encodes a transcription factor capable of inducing fluconazole (FLZ) resistance inCandidaspecies. Isolates with high-activity Mrr1 variants were resistant to FLZ due to elevated expression of theMDR1-encoded efflux pump. We found that high Mrr1-regulated Mdr1 activity protected against host and bacterial factors, suggesting drug resistance can be selected for indirectly and perhaps explaining the Mrr1 heterogeneity in this individual who had no prior azole exposure. Regional analysis ofC. lusitaniaepopulations from the upper and lower lobes of the right lung suggested intermingling of subpopulations throughout. Our retrospective characterization of sputum and lung populations by pooled sequencing found that alleles that confer FLZ resistance were a minority in each pool, possibly explaining why they were undetected before unsuccessful FLZ therapy. New susceptibility testing regimes may detect problematical drug-resistant subpopulations in heterogeneous single-species infections.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

HHS | NIH | National Heart, Lung, and Blood Institute

Cystic Fibrosis Foundation

National Science Foundation

HHS | NIH | NIH Office of the Director

HHS | NIH | National Cancer Institute

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3