Abstract
DNA-encoded libraries (DEL)-based discovery platforms have recently been widely adopted in the pharmaceutical industry, mainly due to their powerful diversity and incredible number of molecules. In the two decades since their disclosure, great strides have been made to expand the toolbox of reaction modes that are compatible with the idiosyncratic aqueous, dilute, and DNA-sensitive parameters of this system. However, construction of highly important C(sp3)−C(sp3) linkages on DNA through cross-coupling remains unexplored. In this article, we describe a systematic approach to translating standard organic reactions to a DEL setting through the tactical combination of kinetic analysis and empirical screening with information captured from data mining. To exemplify this model, implementation of the Giese addition to forge high value C–C bonds on DNA was studied, which represents a radical-based synthesis in DEL.
Funder
Pfizer
HHS | NIH | National Institute of General Medical Sciences
Publisher
Proceedings of the National Academy of Sciences
Cited by
139 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献