Expansion of cancer stem cell pool initiates lung cancer recurrence before angiogenesis

Author:

Li Lei,Li Jiang-Chao,Yang Hong,Zhang Xu,Liu Lu-Lu,Li Yan,Zeng Ting-Ting,Zhu Ying-Hui,Li Xiao-Dong,Li Yan,Xie Dan,Fu Li,Guan Xin-YuanORCID

Abstract

Angiogenesis is essential in the early stage of solid tumor recurrence, but how a suspensive tumor is reactivated before angiogenesis is mostly unknown. Herein, we stumble across an interesting phenomenon that s.c. xenografting human lung cancer tissues can awaken the s.c. suspensive tumor in nude mice. We further found that a high level of insulin-like growth factor 1 (IGF1) was mainly responsible for triggering the transition from suspensive tumor to progressive tumor in this model. The s.c. suspensive tumor is characterized with growth arrest, avascularity, and a steady-state level of proliferating and apoptotic cells. Intriguingly, CD133+lung cancer stem cells (LCSCs) are highly enriched in suspensive tumor compared with progressive tumor. Mechanistically, high IGF1 initiates LCSCs self-renewal from asymmetry to symmetry via the activation of a PI3K/Akt/β-catenin axis. Next, the expansion of LCSC pool promotes angiogenesis by increasing the production of CXCL1 and PlGF in CD133+LCSCs, which results in lung cancer recurrence. Clinically, a high level of serum IGF1 in lung cancer patients after orthotopic lung cancer resection as an unfavorable factor is strongly correlated with the high rate of recurrence and indicates an adverse progression-free survival. Vice versa, blocking IGF1 or CXCL1/PlGF with neutralizing antibodies can prevent the reactivation of a suspensive tumor induced by IGF1 stimulation in the mouse model. Collectively, the expansion of LCSC pool before angiogenesis induced by IGF1 is a key checkpoint during the initiation of cancer relapse, and targeting serum IGF1 may be a promising treatment for preventing recurrence in lung cancer patients.

Funder

National Basic Research Program of China

National Science and Technology Major Project of China

National Natural Science Foundation of China

Hong Kong Research Grant Council General Research Fund

Hong Kong Research Grant Collaborative Research Fund

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3