Abstract
Angiogenesis is essential in the early stage of solid tumor recurrence, but how a suspensive tumor is reactivated before angiogenesis is mostly unknown. Herein, we stumble across an interesting phenomenon that s.c. xenografting human lung cancer tissues can awaken the s.c. suspensive tumor in nude mice. We further found that a high level of insulin-like growth factor 1 (IGF1) was mainly responsible for triggering the transition from suspensive tumor to progressive tumor in this model. The s.c. suspensive tumor is characterized with growth arrest, avascularity, and a steady-state level of proliferating and apoptotic cells. Intriguingly, CD133+lung cancer stem cells (LCSCs) are highly enriched in suspensive tumor compared with progressive tumor. Mechanistically, high IGF1 initiates LCSCs self-renewal from asymmetry to symmetry via the activation of a PI3K/Akt/β-catenin axis. Next, the expansion of LCSC pool promotes angiogenesis by increasing the production of CXCL1 and PlGF in CD133+LCSCs, which results in lung cancer recurrence. Clinically, a high level of serum IGF1 in lung cancer patients after orthotopic lung cancer resection as an unfavorable factor is strongly correlated with the high rate of recurrence and indicates an adverse progression-free survival. Vice versa, blocking IGF1 or CXCL1/PlGF with neutralizing antibodies can prevent the reactivation of a suspensive tumor induced by IGF1 stimulation in the mouse model. Collectively, the expansion of LCSC pool before angiogenesis induced by IGF1 is a key checkpoint during the initiation of cancer relapse, and targeting serum IGF1 may be a promising treatment for preventing recurrence in lung cancer patients.
Funder
National Basic Research Program of China
National Science and Technology Major Project of China
National Natural Science Foundation of China
Hong Kong Research Grant Council General Research Fund
Hong Kong Research Grant Collaborative Research Fund
Publisher
Proceedings of the National Academy of Sciences
Cited by
42 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献