Lariat intronic RNAs in the cytoplasm of vertebrate cells

Author:

Talhouarne Gaëlle J. S.,Gall Joseph G.

Abstract

Most intronic RNAs are degraded within seconds or minutes after their excision from newly formed transcripts. However, stable intronic sequence RNAs (sisRNAs) have been described from oocytes of the frog Xenopus, from Drosophila embryos, and from human cell lines. In Xenopus oocytes, sisRNAs are abundant in both the nucleus and cytoplasm, they occur in the form of lariats, and they are stable for days. In this study we demonstrate that cytoplasmic sisRNAs are also found in human, mouse, chicken, and zebrafish cells. They exist as circular (lariat) molecules, mostly 100–500 nucleotides in length, and are derived from many housekeeping genes. They tend to have an unusual cytosine branchpoint (with the exception of those from the frog). Stable lariats are exported from the nucleus to the cytoplasm by the NXF1/NXT1 system, demonstrating that their presence in the cytoplasm is not due to passive diffusion. Lariats in the cytoplasm are not associated with transcripts of the genes from which they are derived. The biological significance of cytoplasmic sisRNAs remains obscure.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 81 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Crosstalk between circular RNAs and the STAT3 signaling pathway in human cancer;Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms;2024-12

2. Functional roles of conserved lncRNAs and circRNAs in eukaryotes;Non-coding RNA Research;2024-12

3. Sequestration of DBR1 to stress granules promotes lariat intronic RNAs accumulation for heat-stress tolerance;Nature Communications;2024-09-03

4. The idiosyncrasies of oocytes;Trends in Cell Biology;2024-08

5. Circular RNA in cancer;Nature Reviews Cancer;2024-07-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3