Role of elemental carbon in the photochemical aging of soot

Author:

Li Meng,Bao Fengxia,Zhang Yue,Song Wenjing,Chen ChunchengORCID,Zhao Jincai

Abstract

Soot, which consists of organic carbon (OC) and elemental carbon (EC), is a significant component of the total aerosol mass in the atmosphere. Photochemical oxidation is an important aging pathway for soot. It is commonly believed that OC is photoactive but EC, albeit its strong light absorption, is photochemically inert. Here, by taking advantage of the different light absorption properties of OC and EC, we provide direct experimental evidence that EC also plays an important role in the photochemical aging of soot by initiating the oxidation of OC, even under red light irradiation. We show that nascent soot, in addition to undergoing photochemical oxidation under blue light with a wavelength of 440 nm, undergoes similar oxidation under red light irradiation of λ = 648 nm (L648). However, separated OC (extracted from soot by n-hexane) and EC exhibit little reactivity under L648. These observations indicate that EC plays a pivotal role in photoaging of soot by adsorbing light to initiate the oxidation of OC. Comparison of in situ IR spectra and photoelectrochemical behaviors suggests that EC-initiated photooxidation of OC proceeds through an electron transfer pathway, which is distinct from the photoaging induced by light absorption of OC. Since the absorption spectra of EC have a much larger overlap with the solar spectra than those of OC, our results provide insight into the chemical mechanism leading to rapid soot aging by organic species observed from atmospheric field measurements.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3