Abstract
The peptidoglycan (PG) layer stabilizes the bacterial cell envelope to maintain the integrity and shape of the cell. Penicillin-binding proteins (PBPs) synthesize essential 4–3 cross-links in PG and are inhibited by β-lactam antibiotics. Some clinical isolates and laboratory strains ofEnterococcus faeciumandEscherichia coliachieve high-level β-lactam resistance by utilizing β-lactam–insensitive LD-transpeptidases (LDTs) to produce exclusively 3–3 cross-links in PG, bypassing the PBPs. InE. coli, other LDTs covalently attach the lipoprotein Lpp to PG to stabilize the envelope and maintain the permeability barrier function of the outermembrane. Here we show that subminimal inhibitory concentration of copper chloride sensitizesE. colicells to sodium dodecyl sulfate and impair survival upon LPS transport stress, indicating reduced cell envelope robustness. Cells grown in the presence of copper chloride lacked 3–3 cross-links in PG and displayed reduced covalent attachment of Braun’s lipoprotein and reduced incorporation of a fluorescentd-amino acid, suggesting inhibition of LDTs. Copper dramatically decreased the minimal inhibitory concentration of ampicillin inE. coliandE. faeciumstrains with a resistance mechanism relying on LDTs and inhibited purified LDTs at submillimolar concentrations. Hence, our work reveals how copper affects bacterial cell envelope stability and counteracts LDT-mediated β-lactam resistance.
Publisher
Proceedings of the National Academy of Sciences
Cited by
64 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献