Abstract
How knotted proteins fold has remained controversial since the identification of deeply knotted proteins nearly two decades ago. Both computational and experimental approaches have been used to investigate protein knot formation. Motivated by the computer simulations of Bölinger et al. [Bölinger D, et al. (2010) PLoS Comput Biol 6:e1000731] for the folding of the 61-knotted α-haloacid dehalogenase (DehI) protein, we introduce a topological description of knot folding that could describe pathways for the formation of all currently known protein knot types and predicts knot types that might be identified in the future. We analyze fingerprint data from crystal structures of protein knots as evidence that particular protein knots may fold according to specific pathways from our theory. Our results confirm Taylor’s twisted hairpin theory of knot folding for the 31-knotted proteins and the 41-knotted ketol-acid reductoisomerases and present alternative folding mechanisms for the 41-knotted phytochromes and the 52- and 61-knotted proteins.
Funder
NSF | MPS | Division of Mathematical Sciences
Institute for Advanced Study
Publisher
Proceedings of the National Academy of Sciences
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献