A tensor-based framework for studying eigenvector multicentrality in multilayer networks

Author:

Wu Mincheng,He Shibo,Zhang Yongtao,Chen Jiming,Sun Youxian,Liu Yang-YuORCID,Zhang Junshan,Poor H. VincentORCID

Abstract

Centrality is widely recognized as one of the most critical measures to provide insight into the structure and function of complex networks. While various centrality measures have been proposed for single-layer networks, a general framework for studying centrality in multilayer networks (i.e., multicentrality) is still lacking. In this study, a tensor-based framework is introduced to study eigenvector multicentrality, which enables the quantification of the impact of interlayer influence on multicentrality, providing a systematic way to describe how multicentrality propagates across different layers. This framework can leverage prior knowledge about the interplay among layers to better characterize multicentrality for varying scenarios. Two interesting cases are presented to illustrate how to model multilayer influence by choosing appropriate functions of interlayer influence and design algorithms to calculate eigenvector multicentrality. This framework is applied to analyze several empirical multilayer networks, and the results corroborate that it can quantify the influence among layers and multicentrality of nodes effectively.

Funder

DOD | United States Army | RDECOM | Army Research Office

DOD | Defense Threat Reduction Agency

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved gravity centrality for finding important nodes in multi-layer networks based on multi-PageRank;Expert Systems with Applications;2024-03

2. Topology and spectral interconnectivities of higher-order multilayer networks;Frontiers in Complex Systems;2023-11-20

3. Multilayer interbank networks and systemic risk propagation: Evidence from China;Physica A: Statistical Mechanics and its Applications;2023-10

4. The two-steps eigenvector centrality in complex networks;Chaos, Solitons & Fractals;2023-08

5. Critical Nodes Evaluation in Multiplex Heterogeneous Network Based on Gravity Model;2023 15th International Conference on Communication Software and Networks (ICCSN);2023-07-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3