Author:
Dym Nadav,Slutsky Raz,Lipman Yaron
Abstract
We consider Riemann mappings from bounded Lipschitz domains in the plane to a triangle. We show that in this case the Riemann mapping has a linear variational principle: It is the minimizer of the Dirichlet energy over an appropriate affine space. By discretizing the variational principle in a natural way we obtain discrete conformal maps which can be computed by solving a sparse linear system. We show that these discrete conformal maps converge to the Riemann mapping in H1, even for non-Delaunay triangulations. Additionally, for Delaunay triangulations the discrete conformal maps converge uniformly and are known to be bijective. As a consequence we show that the Riemann mapping between two bounded Lipschitz domains can be uniformly approximated by composing the discrete Riemann mappings between each Lipschitz domain and the triangle.
Funder
EC | FP7 | FP7 Ideas: European Research Council
Israel Science Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献