Abstract
A hallmark of human social behavior is the effortless ability to relate one’s own actions to that of the interaction partner, e.g., when stretching out one’s arms to catch a tripping child. What are the behavioral properties of the neural substrates that support this indispensable human skill? Here we examined the processes underlying the ability to relate actions to each other, namely the recognition of spatiotemporal contingencies between actions (e.g., a “giving” that is followed by a “taking”). We used a behavioral adaptation paradigm to examine the response properties of perceptual mechanisms at a behavioral level. In contrast to the common view that action-sensitive units are primarily selective for one action (i.e., primary action, e.g., ‘throwing”), we demonstrate that these processes also exhibit sensitivity to a matching contingent action (e.g., “catching”). Control experiments demonstrate that the sensitivity of action recognition processes to contingent actions cannot be explained by lower-level visual features or amodal semantic adaptation. Moreover, we show that action recognition processes are sensitive only to contingent actions, but not to noncontingent actions, demonstrating their selective sensitivity to contingent actions. Our findings show the selective coding mechanism for action contingencies by action-sensitive processes and demonstrate how the representations of individual actions in social interactions can be linked in a unified representation.
Publisher
Proceedings of the National Academy of Sciences
Reference41 articles.
1. Action recognition and movement direction discrimination tasks are associated with different adaptation patterns;de la Rosa;Front Hum Neurosci,2016
2. Visual adaptation: Neural, psychological and computational aspects
3. About turn: The visual representation of human body orientation revealed by adaptation;Lawson;Psychol Sci,2009
4. Bekesy Gv (1929) Zur Theorie des Hörens: Über die Bestimmung des einem reinen Tonempfinden entsprechenden Erregungsgebietes der Basilarmembran vermittelst Ermüdungserscheinungen [Regarding a theory of hearing: About the determination of excitation area of the basilar membrane regarding pure tone listening]. Phys Z 30:115–125. German.
5. fMR-adaptation: a tool for studying the functional properties of human cortical neurons
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献