Yin-and-yang bifurcation of opioidergic circuits for descending analgesia at the midbrain of the mouse

Author:

Kim Jong-Hyun,Gangadharan Gireesh,Byun Junweon,Choi Eui-Ju,Lee C. Justin,Shin Hee-Sup

Abstract

In the descending analgesia pathway, opioids are known to disinhibit the projections from the periaqueductal gray (PAG) to the rostral ventromedial medulla (RVM), leading to suppression of pain signals at the spinal cord level. The locus coeruleus (LC) has been proposed to engage in the descending pathway through noradrenergic inputs to the spinal cord. Nevertheless, how the LC is integrated in the descending analgesia circuit has remained unknown. Here, we show that the opioidergic analgesia pathway is bifurcated in structure and function at the PAG. A knockout as well as a PAG-specific knockdown of phospholipase C β4 (PLCβ4), a signaling molecule for G protein-coupled receptors, enhanced swim stress-induced and morphine-induced analgesia in mice. Immunostaining after simultaneous retrograde labeling from the RVM and the LC revealed two mutually exclusive neuronal populations at the PAG, each projecting either to the LC or the RVM, with PLCβ4 expression only in the PAG-LC projecting cells that provide a direct synaptic input to LC-spinal cord (SC) projection neurons. The PAG-LC projection neurons in wild-type mice turned quiescent in response to opiates, but remained active in the PLCβ4 mutant, suggesting a possibility that an increased adrenergic function induced by the persistent PAG-LC activity underlies the enhanced opioid analgesia in the mutant. Indeed, the enhanced analgesia in the mutant was reversed by blocking α2-noradrenergic receptors. These findings indicate that opioids suppress descending analgesia through the PAG-LC pathway, while enhancing it through the PAG-RVM pathway, i.e., two distinct pathways with opposing effects on opioid analgesia. These results point to a therapeutic target in pain control.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3