Inverse enzyme isotope effects in human purine nucleoside phosphorylase with heavy asparagine labels

Author:

Harijan Rajesh K.,Zoi Ioanna,Antoniou Dimitri,Schwartz Steven D.,Schramm Vern L.

Abstract

Transition path-sampling calculations with several enzymes have indicated that local catalytic site femtosecond motions are linked to transition state barrier crossing. Experimentally, femtosecond motions can be perturbed by labeling the protein with amino acids containing 13C, 15N, and nonexchangeable 2H. A slowed chemical step at the catalytic site with variable effects on steady-state kinetics is usually observed for heavy enzymes. Heavy human purine nucleoside phosphorylase (PNP) is slowed significantly (kchemlight/kchemheavy = 1.36). An asparagine (Asn243) at the catalytic site is involved in purine leaving-group activation in the PNP catalytic mechanism. In a PNP produced with isotopically heavy asparagines, the chemical step is faster (kchemlight/kchemheavy = 0.78). When all amino acids in PNP are heavy except for the asparagines, the chemical step is also faster (kchemlight/kchemheavy = 0.71). Substrate-trapping experiments provided independent confirmation of improved catalysis in these constructs. Transition path-sampling analysis of these partially labeled PNPs indicate altered femtosecond catalytic site motions with improved Asn243 interactions to the purine leaving group. Altered transition state barrier recrossing has been proposed as an explanation for heavy-PNP isotope effects but is incompatible with these isotope effects. Rate-limiting product release governs steady-state kinetics in this enzyme, and kinetic constants were unaffected in the labeled PNPs. The study suggests that mass-constrained femtosecond motions at the catalytic site of PNP can improve transition state barrier crossing by more frequent sampling of essential catalytic site contacts.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3