BRCA1 ensures genome integrity by eliminating estrogen-induced pathological topoisomerase II–DNA complexes

Author:

Sasanuma Hiroyuki,Tsuda Masataka,Morimoto Suguru,Saha Liton Kumar,Rahman Md Maminur,Kiyooka Yusuke,Fujiike Haruna,Cherniack Andrew D.,Itou Junji,Callen Moreu Elsa,Toi Masakazu,Nakada Shinichiro,Tanaka HisashiORCID,Tsutsui Ken,Yamada Shintaro,Nussenzweig Andre,Takeda Shunichi

Abstract

Women having BRCA1 germ-line mutations develop cancer in breast and ovary, estrogen-regulated tissues, with high penetrance. Binding of estrogens to the estrogen receptor (ER) transiently induces DNA double-strand breaks (DSBs) by topoisomerase II (TOP2) and controls gene transcription. TOP2 resolves catenated DNA by transiently generating DSBs, TOP2-cleavage complexes (TOP2ccs), where TOP2 covalently binds to 5′ ends of DSBs. TOP2 frequently fails to complete its catalysis, leading to formation of pathological TOP2ccs. We have previously shown that the endonucleolytic activity of MRE11 plays a key role in removing 5′ TOP2 adducts in G1phase. We show here that BRCA1 promotes MRE11-mediated removal of TOP2 adducts in G1phase. We disrupted theBRCA1gene in53BP1-deficient ER-positive breast cancer and B cells. The loss of BRCA1 caused marked increases of pathological TOP2ccs in G1phase following exposure to etoposide, which generates pathological TOP2ccs. We conclude that BRCA1 promotes the removal of TOP2 adducts from DSB ends for subsequent nonhomologous end joining.BRCA1-deficient cells showed a decrease in etoposide-induced MRE11 foci in G1phase, suggesting that BRCA1 repairs pathological TOP2ccs by promoting the recruitment of MRE11 to TOP2cc sites. BRCA1 depletion also leads to the increase of unrepaired DSBs upon estrogen treatment both in vitro in G1-arrested breast cancer cells and in vivo in epithelial cells of mouse mammary glands. BRCA1 thus plays a critical role in removing pathological TOP2ccs induced by estrogens as well as etoposide. We propose that BRCA1 suppresses tumorigenesis by removing estrogen-induced pathological TOP2ccs throughout the cell cycle.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3