Author:
Archer Natasha M.,Petersen Nicole,Clark Martha A.,Buckee Caroline O.,Childs Lauren M.,Duraisingh Manoj T.
Abstract
Sickle cell trait (AS) confers partial protection against lethal Plasmodium falciparum malaria. Multiple mechanisms for this have been proposed, with a recent focus on aberrant cytoadherence of parasite-infected red blood cells (RBCs). Here we investigate the mechanistic basis of AS protection through detailed temporal mapping. We find that parasites in AS RBCs maintained at low oxygen concentrations stall at a specific stage in the middle of intracellular growth before DNA replication. We demonstrate that polymerization of sickle hemoglobin (HbS) is responsible for this growth arrest of intraerythrocytic P. falciparum parasites, with normal hemoglobin digestion and growth restored in the presence of carbon monoxide, a gaseous antisickling agent. Modeling of growth inhibition and sequestration revealed that HbS polymerization-induced growth inhibition following cytoadherence is the critical driver of the reduced parasite densities observed in malaria infections of individuals with AS. We conclude that the protective effect of AS derives largely from effective sequestration of infected RBCs into the hypoxic microcirculation.
Funder
Harvard Catalyst
American Society of Hematology
Eleanor and Miles Shore Foundation
Burroughs Wellcome Fund
HHS | NIH | National Heart, Lung, and Blood Institute
Publisher
Proceedings of the National Academy of Sciences
Cited by
96 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献