Abstract
Progesterone (P4) is a potent neuroprotectant and a promising therapeutic for stroke treatment. However, the underlying mechanism(s) remain unclear. Our laboratory recently reported that brain-derived neurotrophic factor (BDNF) is a critical mediator of P4’s protective actions and that P4-induced BDNF release from cortical astrocytes is mediated by a membrane-associated progesterone receptor, Pgrmc1. Here, we report that the microRNA (miRNA) let-7i is a negative regulator of Pgrmc1 and BDNF in glia and that let-7i disrupts P4-induced BDNF release and P4’s beneficial effects on cell viability and markers of synaptogenesis. Using an in vivo model of ischemia, we demonstrate that inhibiting let-7i enhances P4-induced neuroprotection and facilitates functional recovery following stroke. The discovery of such factors that regulate the cytoprotective effects of P4 may lead to the development of biomarkers to differentiate/predict those likely to respond favorably to P4 versus those that do not.
Funder
American Heart Association
National Institute of Health
Publisher
Proceedings of the National Academy of Sciences
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献