Quorum sensing and iron regulate a two-for-one siderophore gene cluster inVibrio harveyi

Author:

McRose Darcy L.ORCID,Baars Oliver,Seyedsayamdost Mohammad R.,Morel François M. M.

Abstract

The secretion of small Fe-binding molecules called siderophores is an important microbial strategy for survival in Fe-limited environments. Siderophore production is often regulated by quorum sensing (QS), a microbial counting technique that allows organisms to alter gene expression based on cell density. However, the identity and quantities of siderophores produced under QS regulation are rarely studied in the context of their roles in Fe uptake. We investigated the link between QS, siderophores, and Fe uptake in the model marine organismVibrio harveyiwhere QS is thought to repress siderophore production. We find thatV. harveyiuses a single QS- and Fe-repressed gene cluster to produce both cell-associated siderophores (amphiphilic enterobactins) as well as several related soluble siderophores, which we identify and quantify using liquid chromatography-coupled (LC)-MS as well as tandem high-resolution MS (LC-HR-MS/MS). Measurements of siderophore production show that soluble siderophores are present at ∼100× higher concentrations than amphi-enterobactin and that over the course of growthV. harveyidecreases amphi-enterobactin concentrations but accumulates soluble siderophores.55Fe radio-tracer uptake experiments demonstrate that these soluble siderophores play a significant role in Fe uptake and that the QS-dictated concentrations of soluble siderophores in stationary phase are near the limit of cellular uptake capacities. We propose that cell-associated and soluble siderophores are beneficial toV. harveyiin different environmental and growth contexts and that QS allowsV. harveyito exploit “knowledge” of its population size to avoid unnecessary siderophore production.

Funder

National Science Foundation

Princeton Environmental Institute, Princeton University

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3