Abstract
Mammals and their closest fossil relatives are unique among tetrapods in expressing a high degree of pectoral girdle and forelimb functional diversity associated with fully pelagic, cursorial, subterranean, volant, and other lifestyles. However, the earliest members of the mammalian stem lineage, the “pelycosaur”-grade synapsids, present a far more limited range of morphologies and inferred functions. The more crownward nonmammaliaform therapsids display novel forelimb morphologies that have been linked to expanded functional diversity, suggesting that the roots of this quintessentially mammalian phenotype can be traced to the pelycosaur–therapsid transition in the Permian period. We quantified morphological disparity of the humerus in pelycosaur-grade synapsids and therapsids using geometric morphometrics. We found that disparity begins to increase concurrently with the emergence of Therapsida, and that it continues to rise until the Permo-Triassic mass extinction. Further, therapsid exploration of new regions of morphospace is correlated with the evolution of novel ecomorphologies, some of which are characterized by changes to overall limb morphology. This evolutionary pattern confirms that nonmammaliaform therapsid forelimbs underwent ecomorphological diversification throughout the Permian, with functional elaboration initially being more strongly expressed in the proximal end of the humerus than the distal end. The role of the forelimbs in the functional diversification of therapsids foreshadows the deployment of forelimb morphofunctional diversity in the evolutionary radiation of mammals.
Funder
National Science Foundation
Publisher
Proceedings of the National Academy of Sciences
Reference46 articles.
1. Polly PD (2007) Limbs in mammalian evolution. Fins into Limbs: Evolution, Development and Transformation (University of Chicago Press, Chicago), pp 245–268.
2. Luo Z-X (2015) Origin of the mammalian shoulder. Great Transformations in the History of Vertebrate Life (University of Chicago Press, Chicago), pp 167–187.
3. A Swimming Mammaliaform from the Middle Jurassic and Ecomorphological Diversification of Early Mammals
4. A Mesozoic gliding mammal from northeastern China
5. New gliding mammaliaforms from the Jurassic;Meng;Nature,2017
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献