Cell engineering with microfluidic squeezing preserves functionality of primary immune cells in vivo

Author:

DiTommaso Tia,Cole Julie M.,Cassereau Luke,Buggé Joshua A.,Hanson Jacquelyn L. Sikora,Bridgen Devin T.,Stokes Brittany D.,Loughhead Scott M.,Beutel Bruce A.,Gilbert Jonathan B.,Nussbaum Kathrin,Sorrentino Antonio,Toggweiler Janine,Schmidt Tobias,Gyuelveszi Gabor,Bernstein Howard,Sharei Armon

Abstract

The translational potential of cell-based therapies is often limited by complications related to effectively engineering and manufacturing functional cells. While the use of electroporation is widespread, the impact of electroporation on cell state and function has yet to be fully characterized. Here, we use a genome-wide approach to study optimized electroporation treatment and identify striking disruptions in the expression profiles of key functional transcripts of human T cells. These genetic disruptions result in concomitant perturbation of cytokine secretion including a 648-fold increase in IL-2 secretion (P < 0.01) and a 30-fold increase in IFN-γ secretion (P < 0.05). Ultimately, the effects at the transcript and protein level resulted in functional deficiencies in vivo, with electroporated T cells failing to demonstrate sustained antigen-specific effector responses when subjected to immunological challenge. In contrast, cells subjected to a mechanical membrane disruption-based delivery mechanism, cell squeezing, had minimal aberrant transcriptional responses [0% of filtered genes misregulated, false discovery rate (FDR) q < 0.1] relative to electroporation (17% of genes misregulated, FDR q < 0.1) and showed undiminished effector responses, homing capabilities, and therapeutic potential in vivo. In a direct comparison of functionality, T cells edited for PD-1 via electroporation failed to distinguish from untreated controls in a therapeutic tumor model, while T cells edited with similar efficiency via cell squeezing demonstrated the expected tumor-killing advantage. This work demonstrates that the delivery mechanism used to insert biomolecules affects functionality and warrants further study.

Funder

National Science Foundation

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3