Isotropic, nematic, and lamellar phases in colloidal suspensions of nanosheets

Author:

Davidson PatrickORCID,Penisson Christophe,Constantin DoruORCID,Gabriel Jean-Christophe P.

Abstract

The phase diagram of colloidal suspensions of electrically charged nanosheets, such as clays, despite their many industrial uses, is not yet understood either experimentally or theoretically. When the nanosheet diameter is very large (∼100 nm to 1 µm), it is quite challenging to distinguish the lamellar liquid-crystalline phase from a nematic phase with strong stacking local order, often called “columnar” nematic. We show here that newly upgraded small-angle X-ray scattering beamlines at synchrotron radiation facilities provide high-resolution measurements which allow us to identify both phases unambiguously, provided that single domains can be obtained. We investigated dilute aqueous suspensions of synthetic Sb3P2O143−nanosheets that self-organize into two distinct liquid-crystalline phases, sometimes coexisting in the same sample. Close examination of their X-ray reflection profiles in the directions perpendicular to the director demonstrates that these two mesophases are a columnar nematic and a lamellar phase. In the latter, the domain size reaches up to ∼20 µm, which means that each layer is made of >600 nanosheets. Because the lamellar phase was only rarely predicted in suspensions of charged disks, our results show that these systems should be revisited by theory or simulations. The unexpected stability of the lamellar phase also suggests that the rims and faces of Sb3P2O143−nanosheets may have different properties, giving them a patchy particle character.

Funder

Agence Nationale de la Recherche

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3