Abstract
Curcumin (Cur) is a naturally occurring anticancer drug isolated from the Curcuma longa plant. It is known to exhibit anticancer properties via inhibiting the STAT3 phosphorylation process. However, its poor water solubility and low bioavailability impede its clinical application. Herein, we used organoplatinum(II) ← pyridyl coordination-driven self-assembly and a cucurbit[8]uril (CB[8])-mediated heteroternary host–guest complex formation in concert to produce an effective delivery system that transports Cur into the cancer cells. Specifically, a hexagon 1, containing hydrophilic methyl viologen (MV) units and 3,4,5-Tris[2-[2-(2-methoxyethoxy)ethoxy]ethoxy]benzoyl groups alternatively at the vertices, has been synthesized and characterized by several spectroscopic techniques. The MV units of 1 underwent noncovalent complexation with CB[8] to yield a host–guest complex 4. Cur can be encapsulated in 4, via a 1:1:1 heteroternary complex formation, resulting in a water-soluble host–guest complex 5. The host–guest complex 5 exhibited ca. 100-fold improved IC50 values relative to free Cur against human melanoma (C32), melanoma of rodents (B16F10), and hormone-responsive (MCF-7) and triple-negative (MDA-MB231) breast cancer cells. Moreover, strong synergisms of Cur with 1 and 4 with combinatorial indexes of <1 across all of the cell lines were observed. An induced apoptosis with fragmented DNA pattern and inhibited expression of phosphor-STAT3 supported the improved therapeutic potential of Cur in heteroternary complex 5.
Funder
HHS | National Institutes of Health
Publisher
Proceedings of the National Academy of Sciences
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献