Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms

Author:

Luis Angela D.,Kuenzi Amy J.,Mills James N.

Abstract

In this era of unprecedented biodiversity loss and increased zoonotic disease emergence, it is imperative to understand the effects of biodiversity on zoonotic pathogen dynamics in wildlife. Whether increasing biodiversity should lead to a decrease or increase in infection prevalence, termed the dilution and amplification effects, respectively, has been hotly debated in disease ecology. Sin Nombre hantavirus, which has an ∼35% mortality rate when it spills over into humans, occurs at a lower prevalence in the reservoir host, the North American deermouse, in areas with higher small mammal diversity—a dilution effect. However, the mechanism driving this relationship is not understood. Using a mechanistic mathematical model of infection dynamics and a unique long-term, high-resolution, multisite dataset, it appears that the observed dilution effect is a result of increasing small-mammal diversity leading to decreased deermouse population density and, subsequently, prevalence (a result of density-dependent transmission). However, once density is taken into account, there is an increase in the transmission rate at sites with higher diversity—a component amplification effect. Therefore, dilution and amplification are occurring at the same time in the same host–pathogen system; there is a component amplification effect (increase in transmission rate), but overall a net dilution because the effect of diversity on reservoir host population density is stronger. These results suggest we should focus on how biodiversity affects individual mechanisms that drive prevalence and their relative strengths if we want to make generalizable predictions across host–pathogen systems.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3