Literature-based automated discovery of tumor suppressor p53 phosphorylation and inhibition by NEK2

Author:

Choi Byung-Kwon,Dayaram Tajhal,Parikh Neha,Wilkins Angela D.,Nagarajan Meena,Novikov Ilya B.,Bachman Benjamin J.,Jung Sung Yun,Haas Peter J.,Labrie Jacques L.,Pickering Curtis R.,Adikesavan Anbu K.,Regenbogen Sam,Kato Linda,Lelescu Ana,Buchovecky Christie M.,Zhang Houyin,Bao Sheng Hua,Boyer Stephen,Weber Griff,Scott Kenneth L.,Chen Ying,Spangler Scott,Donehower Lawrence A.,Lichtarge Olivier

Abstract

Scientific progress depends on formulating testable hypotheses informed by the literature. In many domains, however, this model is strained because the number of research papers exceeds human readability. Here, we developed computational assistance to analyze the biomedical literature by reading PubMed abstracts to suggest new hypotheses. The approach was tested experimentally on the tumor suppressor p53 by ranking its most likely kinases, based on all available abstracts. Many of the best-ranked kinases were found to bind and phosphorylate p53 (P value = 0.005), suggesting six likely p53 kinases so far. One of these, NEK2, was studied in detail. A known mitosis promoter, NEK2 was shown to phosphorylate p53 at Ser315 in vitro and in vivo and to functionally inhibit p53. These bona fide validations of text-based predictions of p53 phosphorylation, and the discovery of an inhibitory p53 kinase of pharmaceutical interest, suggest that automated reasoning using a large body of literature can generate valuable molecular hypotheses and has the potential to accelerate scientific discovery.

Funder

NSF | BIO | Division of Biological Infrastructure

HHS | NIH | National Institute of General Medical Sciences

Defense Sciences Office, DARPA

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3