ZFAND5/ZNF216 is an activator of the 26S proteasome that stimulates overall protein degradation

Author:

Lee Donghoon,Takayama Shinichi,Goldberg Alfred L.

Abstract

ZFAND5/ZNF216, a member of the zinc finger AN1-type domain family, is abundant in heart and brain, but is induced in skeletal muscle during atrophy (although not in proteotoxic stress). Because mice lacking ZFAND5 exhibit decreased atrophy, a role in stimulating protein breakdown seemed likely. Addition of recombinant ZFAND5 to purified 26S proteasomes stimulated hydrolysis of ubiquitinated proteins, short peptides, and ATP. Mutating its C-terminal AN1 domain abolished the stimulation of proteasomal peptidase activity. Mutating its N-terminal zinc finger A20 domain, which binds ubiquitin chains, prevented the enhanced degradation of ubiquitinated proteins without affecting peptidase activity. Mouse embryonic fibroblast (MEF) cells lacking ZFAND5 had lower rates of protein degradation and proteasomal activity than WT MEFs. ZFAND5 addition to cell lysates stimulated proteasomal activity and protein degradation. Unlike other proteasome regulators, ZFAND5 enhances multiple 26S activities and overall cellular protein breakdown.

Funder

HHS | NIH | National Institute of General Medical Sciences

Muscular Dystrophy Association

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3