Abstract
How can altruism evolve or be maintained in a selfish world? Hamilton’s rule shows that the former process will occur when rb > c—the benefits to the recipients of an altruistic act b, weighted by the relatedness between the social partners r, exceed the costs to the altruists c—drives altruistic genotypes spreading against nonaltruistic ones. From this rule, we infer that altruistic genotypes will persist in a population by forming a stable heritable polymorphism with nonaltruistic genotypes if rb = c makes inclusive fitness of the two morphs equal. We test this prediction using the data of 12 years of study on a cooperatively breeding bird, the Tibetan ground tit Pseudopodoces humilis, where helping is performed by males only and kin-directed. Individual variation in ever acting as a helper was heritable (h2 = 0.47), and the resultant altruism polymorphism remained stable as indicated by low-level annual fluctuation of the percentage of helpers among all adult males (24–28%). Helpers’ indirect fitness gains from increased lifetime reproductive success of related breeders statistically fully compensated for their lifetime direct fitness losses, suggesting that rb = c holds. While our work provides a fundamental support for Hamilton’s idea, it highlights the equivalent inclusive fitness returns to altruists and nonaltruists mediated by rb = c as a theoretically and realistically important mechanism to maintain social polymorphism.
Funder
National Natural Science Foundation of China
Publisher
Proceedings of the National Academy of Sciences
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献