Pyridoxal-5′-phosphate as an oxygenase cofactor: Discovery of a carboxamide-forming, α-amino acid monooxygenase-decarboxylase

Author:

Huang Ying,Liu Xiaodong,Cui Zheng,Wiegmann Daniel,Niro Giuliana,Ducho Christian,Song Yuan,Yang Zhaoyong,Van Lanen Steven G.

Abstract

Capuramycins are antimycobacterial antibiotics that consist of a modified nucleoside named uridine-5′-carboxamide (CarU). Previous biochemical studies have revealed that CarU is derived from UMP, which is first converted to uridine-5′-aldehyde in a reaction catalyzed by the dioxygenase CapA and subsequently to 5′-C-glycyluridine (GlyU), an unusual β–hydroxy-α-amino acid, in a reaction catalyzed by the pyridoxal-5′-phosphate (PLP)-dependent transaldolase CapH. The remaining steps that are necessary to furnish CarU include decarboxylation, O atom insertion, and oxidation. We demonstrate that Cap15, which has sequence similarity to proteins annotated as bacterial, PLP-dependent l-seryl-tRNA(Sec) selenium transferases, is the sole catalyst responsible for complete conversion of GlyU to CarU. Using a complementary panel of in vitro assays, Cap15 is shown to be dependent upon substrates O2 and (5′S,6′R)-GlyU, the latter of which was unexpected given that (5′S,6′S)-GlyU is the isomeric product of the transaldolase CapH. The two products of Cap15 are identified as the carboxamide-containing CarU and CO2. While known enzymes that catalyze this type of chemistry, namely α-amino acid 2-monooxygenase, utilize flavin adenine dinucleotide as the redox cofactor, Cap15 remarkably requires only PLP. Furthermore, Cap15 does not produce hydrogen peroxide and is shown to directly incorporate a single O atom from O2 into the product CarU and thus is an authentic PLP-dependent monooxygenase. In addition to these unusual discoveries, Cap15 activity is revealed to be dependent upon the inclusion of phosphate. The biochemical characteristics along with initiatory mechanistic studies of Cap15 are reported, which has allowed us to assign Cap15 as a PLP-dependent (5′S,6′R)-GlyU:O2 monooxygenase-decarboxylase.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3