Abstract
Observations of the Earth’s magnetic field have revealed locally pronounced field minima near each pole at the core–mantle boundary (CMB). The existence of the polar magnetic minima has long been attributed to the supposed large-scale overturning circulation of molten metal in the outer core: Fluid upwells within the inner core tangent cylinder toward the poles and then diverges toward lower latitudes when it reaches the CMB, where Coriolis effects sweep the fluid into anticyclonic vortical flows. The diverging near-surface meridional circulation is believed to advectively draw magnetic flux away from the poles, resulting in the low intensity or even reversed polar magnetic fields. However, the interconnections between polar magnetic minima and meridional circulations have not to date been ascertained quantitatively. Here, we quantify the magnetic effects of steady, axisymmetric meridional circulation via numerically solving the axisymmetric magnetohydrodynamic equations for Earth’s outer core under the magnetostrophic approximation. Extrapolated to core conditions, our results show that the change in polar magnetic field resulting from steady, large-scale meridional circulations in Earth’s outer core is less than 3% of the background field, significantly smaller than the ∼ 100% polar magnetic minima observed at the CMB. This suggests that the geomagnetic polar minima cannot be produced solely by axisymmetric, steady meridional circulations and must depend upon additional tangent cylinder dynamics, likely including nonaxisymmetric, time-varying processes.
Publisher
Proceedings of the National Academy of Sciences
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献