Abstract
The activity of DNA polymerase underlies numerous biotechnologies, cell division, and therapeutics, yet the enzyme remains incompletely understood. We demonstrate that both thermostable and mesophilic DNA polymerases readily utilize deoxyribonucleoside diphosphates (dNDPs) for DNA synthesis and inorganic phosphate for the reverse reaction, that is, phosphorolysis of DNA. For Taq DNA polymerase, the KMs of the dNDP and phosphate substrates are ∼20 and 200 times higher than for dNTP and pyrophosphate, respectively. DNA synthesis from dNDPs is about 17 times slower than from dNTPs, and DNA phosphorolysis about 200 times less efficient than pyrophosphorolysis. Such parameters allow DNA replication without requiring coupled metabolism to sequester the phosphate products, which consequently do not pose a threat to genome stability. This mechanism contrasts with DNA synthesis from dNTPs, which yield high-energy pyrophosphates that have to be hydrolyzed to phosphates to prevent the reverse reaction. Because the last common ancestor was likely a thermophile, dNDPs are plausible substrates for genome replication on early Earth and may represent metabolic intermediates later replaced by the higher-energy triphosphates.
Funder
HHS | NIH | National Institute of General Medical Sciences
Pew Charitable Trusts
NSF | BIO | Division of Molecular and Cellular Biosciences
John Templeton Foundation
Publisher
Proceedings of the National Academy of Sciences
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献