Abstract
Assortative mixing in networks is the tendency for nodes with the same attributes, or metadata, to link to each other. It is a property often found in social networks, manifesting as a higher tendency of links occurring between people of the same age, race, or political belief. Quantifying the level of assortativity or disassortativity (the preference of linking to nodes with different attributes) can shed light on the organization of complex networks. It is common practice to measure the level of assortativity according to the assortativity coefficient, or modularity in the case of categorical metadata. This global value is the average level of assortativity across the network and may not be a representative statistic when mixing patterns are heterogeneous. For example, a social network spanning the globe may exhibit local differences in mixing patterns as a consequence of differences in cultural norms. Here, we introduce an approach to localize this global measure so that we can describe the assortativity, across multiple scales, at the node level. Consequently, we are able to capture and qualitatively evaluate the distribution of mixing patterns in the network. We find that, for many real-world networks, the distribution of assortativity is skewed, overdispersed, and multimodal. Our method provides a clearer lens through which we can more closely examine mixing patterns in networks.
Publisher
Proceedings of the National Academy of Sciences
Reference38 articles.
1. The ties that torture: Simmelian tie analysis in organizations;Krackhardt;Res Sociol Organ,1999
2. Lazega E (2001) The Collegial Phenomenon: The Social Mechanisms of Cooperation Among Peers in a Corporate Law Partnership (Oxford Univ Press, Oxford, UK).
3. Social structure of Facebook networks;Traud;Phys A,2012
4. BODY SIZES OF CONSUMERS AND THEIR RESOURCES
5. The large-scale organization of metabolic networks
Cited by
65 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献