Abstract
Several pathogenicCandidaspecies are capable of heritable and reversible switching between two epigenetic states, “white” and “opaque.” InCandida albicans, white cells are essentially sterile, whereas opaque cells are mating-proficient. Here, we interrogate the mechanism by which the white-opaque switch regulates sexual fecundity and identify four genes in the pheromone MAPK pathway that are expressed at significantly higher levels in opaque cells than in white cells. These genes encode the β subunit of the G-protein complex (STE4), the pheromone MAPK scaffold (CST5), and the two terminal MAP kinases (CEK1/CEK2). To define the contribution of each factor to mating,C. albicanswhite cells were reverse-engineered to express elevated, opaque-like levels of these factors, either singly or in combination. We show that white cells co-overexpressingSTE4,CST5, andCEK2undergo mating four orders of magnitude more efficiently than control white cells and at a frequency approaching that of opaque cells. Moreover, engineered white cells recapitulate the transcriptional and morphological responses of opaque cells to pheromone. These results therefore reveal multiple bottlenecks in pheromone MAPK signaling in white cells and that alleviation of these bottlenecks enables efficient mating by these “sterile” cell types. Taken together, our findings establish that differential expression of several MAPK factors underlies the epigenetic control of mating inC. albicans. We also discuss how fitness advantages could have driven the evolution of a toggle switch to regulate sexual reproduction in pathogenicCandidaspecies.
Funder
HHS | NIH | National Institute of Allergy and Infectious Diseases
HHS | NIH | National Institute of Dental and Craniofacial Research
Burroughs Wellcome Fund
Publisher
Proceedings of the National Academy of Sciences
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献