Author:
Fredericksen Maridel A.,Zhang Yizhe,Hazen Missy L.,Loreto Raquel G.,Mangold Colleen A.,Chen Danny Z.,Hughes David P.
Abstract
Some microbes possess the ability to adaptively manipulate host behavior. To better understand how such microbial parasites control animal behavior, we examine the cell-level interactions between the species-specific fungal parasite Ophiocordyceps unilateralis sensu lato and its carpenter ant host (Camponotus castaneus) at a crucial moment in the parasite’s lifecycle: when the manipulated host fixes itself permanently to a substrate by its mandibles. The fungus is known to secrete tissue-specific metabolites and cause changes in host gene expression as well as atrophy in the mandible muscles of its ant host, but it is unknown how the fungus coordinates these effects to manipulate its host’s behavior. In this study, we combine techniques in serial block-face scanning-electron microscopy and deep-learning–based image segmentation algorithms to visualize the distribution, abundance, and interactions of this fungus inside the body of its manipulated host. Fungal cells were found throughout the host body but not in the brain, implying that behavioral control of the animal body by this microbe occurs peripherally. Additionally, fungal cells invaded host muscle fibers and joined together to form networks that encircled the muscles. These networks may represent a collective foraging behavior of this parasite, which may in turn facilitate host manipulation.
Funder
National Science Foundation
HHS | National Institutes of Health
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
American Heart Association
Publisher
Proceedings of the National Academy of Sciences
Cited by
69 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献