Molecular photoswitches mediating the strain-driven disassembly of supramolecular tubules

Author:

Fredy Jean W.,Méndez-Ardoy Alejandro,Kwangmettatam Supaporn,Bochicchio Davide,Matt Benjamin,Stuart Marc C. A.,Huskens Jurriaan,Katsonis Nathalie,Pavan Giovanni M.ORCID,Kudernac TiborORCID

Abstract

Chemists have created molecular machines and switches with specific mechanical responses that were typically demonstrated in solution, where mechanically relevant motion is dissipated in the Brownian storm. The next challenge consists of designing specific mechanisms through which the action of individual molecules is transmitted to a supramolecular architecture, with a sense of directionality. Cellular microtubules are capable of meeting such a challenge. While their capacity to generate pushing forces by ratcheting growth is well known, conversely these versatile machines can also pull microscopic objects apart through a burst of their rigid tubular structure. One essential feature of this disassembling mechanism is the accumulation of strain in the tubules, which develops when tubulin dimers change shape, triggered by a hydrolysis event. We envision a strategy toward supramolecular machines generating directional pulling forces by harnessing the mechanically purposeful motion of molecular switches in supramolecular tubules. Here, we report on wholly synthetic, water-soluble, and chiral tubules that incorporate photoswitchable building blocks in their supramolecular architecture. Under illumination, these tubules display a nonlinear operation mode, by which light is transformed into units of strain by the shape changes of individual switches, until a threshold is reached and the tubules unleash the strain energy. The operation of this wholly synthetic and stripped-down system compares to the conformational wave by which cellular microtubules disassemble. Additionally, atomistic simulations provide molecular insight into how strain accumulates to induce destabilization. Our findings pave the way toward supramolecular machines that would photogenerate pulling forces, at the nanoscale and beyond.

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 73 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Exerting pulling forces in fluids by directional disassembly of microcrystalline fibres;Nature Nanotechnology;2024-07-29

2. Enzymatic Reaction-Coupled, Cooperative Supramolecular Polymerization;Journal of the American Chemical Society;2024-05-15

3. Responsive Supramolecular Polymers for Diagnosis and Treatment;International Journal of Molecular Sciences;2024-04-06

4. Disassembly of spherical structures into nanohelices by good solvent dilution;Journal of Colloid and Interface Science;2024-03

5. Controlled Noncovalent Synthesis of Secondary Supramolecular Polymers;Journal of the American Chemical Society;2023-09-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3