Windowed Granger causal inference strategy improves discovery of gene regulatory networks

Author:

Finkle Justin D.,Wu Jia J.,Bagheri NedaORCID

Abstract

Accurate inference of regulatory networks from experimental data facilitates the rapid characterization and understanding of biological systems. High-throughput technologies can provide a wealth of time-series data to better interrogate the complex regulatory dynamics inherent to organisms, but many network inference strategies do not effectively use temporal information. We address this limitation by introducing Sliding Window Inference for Network Generation (SWING), a generalized framework that incorporates multivariate Granger causality to infer network structure from time-series data. SWING moves beyond existing Granger methods by generating windowed models that simultaneously evaluate multiple upstream regulators at several potential time delays. We demonstrate that SWING elucidates network structure with greater accuracy in both in silico and experimentally validated in vitro systems. We estimate the apparent time delays present in each system and demonstrate that SWING infers time-delayed, gene–gene interactions that are distinct from baseline methods. By providing a temporal framework to infer the underlying directed network topology, SWING generates testable hypotheses for gene–gene influences.

Funder

HHS | National Institutes of Health

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3