Nongenetic origins of cell-to-cell variability in B lymphocyte proliferation

Author:

Mitchell Simon,Roy Koushik,Zangle Thomas A.,Hoffmann AlexanderORCID

Abstract

Rapid antibody production in response to invading pathogens requires the dramatic expansion of pathogen-derived antigen-specific B lymphocyte populations. Whether B cell population dynamics are based on stochastic competition between competing cell fates, as in the development of competence by the bacterium Bacillus subtilis, or on deterministic cell fate decisions that execute a predictable program, as during the development of the worm Caenorhabditis elegans, remains unclear. Here, we developed long-term live-cell microscopy of B cell population expansion and multiscale mechanistic computational modeling to characterize the role of molecular noise in determining phenotype heterogeneity. We show that the cell lineage trees underlying B cell population dynamics are mediated by a largely predictable decision-making process where the heterogeneity of cell proliferation and death decisions at any given timepoint largely derives from nongenetic heterogeneity in the founder cells. This means that contrary to previous models, only a minority of genetically identical founder cells contribute the majority to the population response. We computationally predict and experimentally confirm nongenetic molecular determinants that are predictive of founder cells’ proliferative capacity. While founder cell heterogeneity may arise from different exposure histories, we show that it may also be due to the gradual accumulation of small amounts of intrinsic noise during the lineage differentiation process of hematopoietic stem cells to mature B cells. Our finding of the largely deterministic nature of B lymphocyte responses may provide opportunities for diagnostic and therapeutic development.

Funder

HHS | NIH | National Institute of Allergy and Infectious Diseases

Publisher

Proceedings of the National Academy of Sciences

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3